
Math 127 KAUST Final Project Due May 15, 2019

This quarter we have spend some time developing the fascinating mathematical ideas
behind a number of modern crypto systems. For this final project, the focus will be on
implementing the ideas we have developed. Some of these functions you have already
developed ino your homework, others you will have to write yourself. I suggest using
cocalc/python 2, as the helper code I will provide will be written in these languages, but
you are welcome to use whichever language is most comfortable for you. We will spend the
next three days doing this work in class, and I hope to be available to help however necessary.

Sumbission Guidelines: To turn in this work I will need a readout of all of your
written code. This includes all the helper functions, and implementation of each of the 3
cryptosystems, and the results of the test cases assigned for each problem. This can be
send as a shared cocalc document or a printout of your code.

I will also need you all to generate public keys for both ElGamal and RSA, which
you will share with me. On the last day of class I will share public keys and you will all
be able to send me messages using your decryption functions. Send me a short message
describing your desired grade. I will decrypt, read, and use your public keys to respond,
sending each of you ciphertext to decrypt. Send me an email with a quote of my decrypted
message so I can see your functions worked.

1 Helper Functions

This first problem involves writing the the helper functions necessary to implement the Diffie-Hellman,
ElGamal, and RSA cryptosystems. Some problems are followed by 2 test cases, whose results should be
turned in along with your code.

1. Define a function called divisionWithRemainder(a,b).

• Input: 2 integers a and b.

• Output: An array [q,r] of the whole number quotient and remainder. That the unique q and r
such that a = bq + r with 0 ≤ r < b.

Test it on the following two pairs of integers:

(a) a = 37 and b = 16.

(b) a = 85354354693 and b = 927256

2. Define a function called findGCD(a,b).

• Input: 2 integers a and b.

• Output: The greatest common denominator of a and b.

You MUST use the Euclidean Algorithm rather than the brute force method, since this should be able
to work with large numbers. Do not hesitate to use the divisionWithRemainder(a,b) function from
question 1. Test your function on the following pairs of integers:

(a) a = 16534528044 and b = 8332745927

(b) a = 170446930 and b = 596564255

3. Define a function called findInverse(a,N).

• Input: An integer modulus N and an integer a.

• Output: If a is invertible modulo N it will return the inverse of a in Z/NZ. If a has no inverse
return an error message.



Use the extended Euclidean algorithm rather than guess an check, since this should be able to work with
large numbers. Do not hesitate to use functions defined earlier. Since N is not necessarily prime, you
cannot use Fermat’s little theorem. Test your function on the following pairs of integers:

(a) a = 9843 and N = 3006908448

(b) a = 8735 and N = 7956970

4. Define a function called fastPower(g,A,N).

• Input: An integer g, integer exponent A and integer modulus N .

• Output: Return gA(mod N) in logA time.

This should not just compute gA and reduce mod N , as for large A this will be extremely inefficient.
Instead implement fast powering. You may want a helper function to convert A to binary, but a more
elegant procedure is outlined in the textbook, problem 1.25 on page 53. Test your function on the
following pairs of integers:

(a) g = 526, A = 1008006, N = 463824966

(b) g = 2, A = 30069476292, N = 30069476293

2 Diffie-Hellman

The following functions will together implement the Diffie-Hellman key exchange protocol. To begin, you
should have global variables p and g, where p is a prime number and g is a principle root, that is, a generator
of (Z/pZ)

∗
. You also may want a global variable a where you can store your secret key.

1. Define a function keyExchange(a,g,p).

• Input: A prime number p, a principle root g, and your secret key a.

• Output: Your half of the public key to swap with your partner.

Notice, this should be a very short function using your helper functions from part 1.

2. Define a function sharedSecret(a,B,p).

• Input: A prime number p, the public key B that you receive from your partner, and your secret
key a.

• Output: You and your partner’s shared secret.

As above, your helper functions should do all the work for you.

3. Now find a partner. Agree on a large prime p and a principle generator g. You should each decide on
(and NOT SHARE) secret keys. Now run keyExchange and swap your halves of the public key. Then
run sharedSecret check that you defined a matching secret key.

3 ElGamal

The following functions will implement each side of the ElGamal asymetric crypto system. Don’t be afraid
of making liberal use of your helper functions from part 1. As in part 2, you should have global variables p
and g where you can save a prime number and a principle root, as well as a global variable a where you can
store your secret key.

We will first define functions you will need to receive messages.

1. Define a function generatePublicKeyEG(a,g,p).

• Input: A prime number p, principle root g, and secret key a.
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• Output: Your public key.

This should look a lot like the function keyExchange from Diffie-Hellman.

2. Define a function elGamalDecrypt(a,c1,c2,p).

• Input: Your secret key a, the ciphertext c1, c2 you received, as well as the prime number p you
used to define your public key.

• Output: The plaintext message m.

You will likely need to use your findInverse function from earlier.

What if you recieve a public key and would like to send a message to the person who generated it? The
following function will allow you to encrypt the message into ciphertext you can safely send. Recall that the
public key you receive should include a large prime p and a principle root g, make sure to save these.

1. Define a function elGamalEncrypt(m,A,g,p).

• Input: The prime and principle root p and g that the person your sending a message to decided
on. Their public key A, and of course your message m, encoded as an integer.

• Output: An array [c1,c2] consisting of the ElGamal ciphertext you can safely send to the
recipient.

Your function should select a different random number k each time it runs. I suggest using the random
python library by putting import random at the top of your code. Then the line random.randint(a,b)

will produce a ‘random’ number between a and b.

2. Now find a partner. Agree on a large prime p and a principle generator g. One of you (Alice) should
decide on a secret key and generate a public key to share with the other (Bob). Bob now should choose
a secret message and send ciphertext to Alice, which Alice can now decrypt. Swap rolls and do it all
again.

4 RSA

The following functions will implement the RSA cryptosystem. If you are trying to receive message, you
should save two large prime numbers p and q as global variables. These must be kept secret. You should
also select an encryption exponent e. First let’s define functions necessary to receive messages.

1. Define a function generatePublicKeyRSA(p,q,e).

• Input: Two primes p and q and an encryption exponent e.

• Output: If GCD(e, (p − 1)(q − 1)) = 1 then return N = pq and e. Otherwise return an error
message instructing the user to select a new encryption exponent.

You then publish N and e as your public key.

2. Define a function computeDecryptionExponent(p,q,e).

• Input: Two primes p and q and an RSA encryption exponent e.

• Output: The RSA decryption exponent d.

It would likely be useful to save d as a global variable so as to not have to repeatedly compute it.

3. Define a function RSADecrypt(c,d,N).

• Input: The ciphertext c, decryption exponent d, and modulus N = pq.

• Output: The plaintext message you have been sent.
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Notice that you don’t actually need p and q if you already have your decryption exponent d and public
key N computed.

If you are hoping to send someone a message, and they have shared e and N with you, the following will
allow you to encrypt a message.

1. Define a function RSAEncrypt(m,e,N).

• Input: Your message m converted to an integer, and a the public key of person you are sending
the message, which consists of an encryption exponent e and modulus N .

• Output: RSA ciphertext c.

2. Now find a partner. One of you (Alice) should decide on a secret key and generate a public key to share
with the other (Bob). Bob now should choose a secret message and send ciphertext to Alice, which Alice
can now decrypt. Swap rolls and do it all again.
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