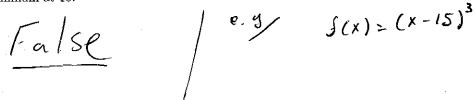


Directions:


- You have 80 minutes to complete this exam.
- Only TI 30 Calculators are allowed.
- You are allowed one hand-written sheet (two sided is ok) of notes on regular 8.5-11 paper.
- You must show ALL your work.
- Leave answers in EXACT FORM or record up to 2 DECIMAL PLACES.
- If you have any questions, raise your hand.

Question	Points	Score
1	15	
2	20	
3	10	
4	10	
5	25	
Total:	80	

- 1. Answer the following true or false questions. You do not need to justify your work.
 - (a) (3 points) If f is a smooth function, and f(2) = f(8), then there is some number c, with 2 < c < 8, so that f'(c) = 0.

(b) (3 points) Suppose f is a function with f'(15) = 0. Then f has either a local maximum or a local minimum at 15.

(c) (3 points) Let f be a continuous function defined on (a,b). Then f has an absolute maximum in the interval (a,b).

False (a,b)=(0,1)

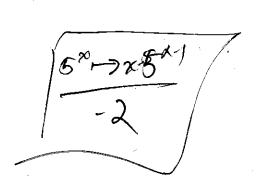
(d) (3 points) Let f be a smooth function, with f(0) = 0 and f(10) = 20. Then there is a number between 0 and 10, whose the tangent line to f has a slope of 2.

True Menn Value Theorem

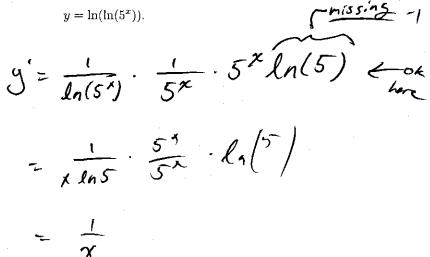
(e) (3 points) A local maximum or local minimum must occur at a critical number.

True | Fermit's Theorem

2. In each of the following, compute $\frac{dy}{dx}$. You may need to use logarithmic or implicit differentiation. There is no need to simplify your answers.


(a) (5 points)

$$y = \frac{(\sin x)^{\sqrt{x}}}{(\sqrt{x})^{\sin x}}.$$


$$(2n(\frac{a}{6}) \cdot 2na)$$
 $(3n \cdot 4nb)$
 $(4n \cdot 6) \cdot 2na$
 $(4n \cdot 6) \cdot 2na$
 $(5n \cdot 6) \cdot (5na)$
 $(6n \cdot 6) \cdot (5na)$

$$\sin(xy^2) = x^5 + y^6$$

$$y' = \frac{5x^{4} - y^{2} \cos(xy^{2})}{2xy \cos(xy^{2}) - 6y^{5}}$$

$$y = \ln(\ln(5^x)).$$

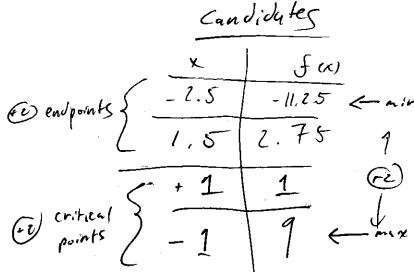
$$y = \arcsin(2x) \cdot \arccos(3x^2)$$
.

- 3. (10 points) Use linear approximation to estimate $\sqrt[7]{129}$, by linearizing the function $f(x) = \sqrt[7]{x}$ at a suitable number. (HINT: What number near 129 do you know 7th root of?).

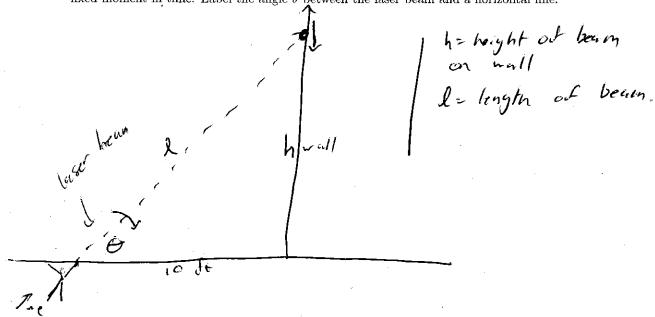
tare S(a) = Tier = 2

5(x)= 1.x=6/7

(+3) L(x) = f(a) + f(a)(x-a)

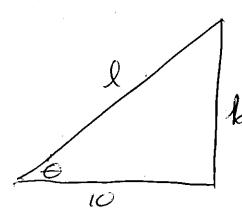

= 2 + 4 (x - 128)

TIET = S(129) = L(129) = 2+ 11 (129-128)


= 2 + 444 = 897

4. (10 points) Let $f(x) = 2x^3 - 6x + 5$. Find the absolute maximum and minimum values of f on the interval [-2.5, 1.5].

Find critical points $\int (x) = 6x^2 - 6$ $\int (x) = 0, \quad x = 1$ $\int (x) = 0$


- 5. You stand ten feet away from an infinitely tall wall, holding a high powered laser pointer. You point the laser beam straight up, and at a constant angular velocity lower it. After 10 seconds it is pointed horizontally, directly at the wall.
 - (a) (5 points) Draw a picture of the situation. Label yourself, the wall, and draw the laser beam at a fixed moment in time. Label the angle θ between the laser beam and a horizontal line.

(b) (10 points) Compute the speed at which the end of the beam is traveling along the wall when it is at an angle of $\theta = \pi/3$ radians above horizontal.

Unknown

(c) (5 points) Find an equation for the length of the laser beam in terms of θ .

$$\cos \Theta = \frac{1}{10}$$

l=10 (cos6) = 10sec0 L not cos 6

(d) (5 points) Compute the rate at which the length of the laser beam is decreasing when $\theta=\pi/3$

Disserentate unt t-

Page 8

$$= \frac{\pi}{2} \{an \Theta \sec \Theta\}$$