Sept24 Wednesday, September 23, 2020 8:42 A Groups Dest A Group is a set G with a Sor combining elts, a, b6G, a*b6G. rule * satisfying 1) There exist exclass st. exa=a=a*e 2) Any $a \in G_1$, there is a (unique) inverse a^{-1} S.E. $a \neq a^{-1} = e^{-1} = a^{-1} \neq a$ 3) a* (b* C) = (a*b)*C. IJ also 4)a = b = aEpen Gr 3 commotative Examples 1) #p *= × e=(Z)Z/nZ e=0 r=+SIA by a, b, c, d ER 3) $G_1 = \begin{cases} \alpha & \beta \\ c & d \end{cases}$ $ad - bc \neq 0 \end{cases}$ $GL_2(R)$ * = matrix multiplication. $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{array}{c} Check (.10)(a,b) = (a,b) \\ (0)(c,d) = (c,d) \end{array} \begin{array}{c} \checkmark \end{array}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -L & a \end{pmatrix}$ check $(a b)(a b)^{-1} = (0)$ $(c d)(c d)(c d)^{-1} = (0)$ Check $\binom{\binom{1}{2}}{\binom{1}{2}} = \binom{\binom{1}{2}}{\binom{1}{2}}$ $\begin{pmatrix} 1 & (1) & (1) \\ 0 & (1) & (1) \\ (1) & (1) \end{pmatrix} = \begin{pmatrix} 2 & (1) \\ (1) & (1) \end{pmatrix}$ 4) Giln(R)= {n×n matrices w/ nonzero det 3 $5)GL_n(F_p)$ L) $G_{L_2}(F_p) = \sum_{c} a b a_{b_c} c_{c_1} d G_{T_p}$ Check This is a group $|G_L_z(\mathcal{F}_p)| \leq p^4$

solve some mathematical problem Quadratic vs Exponential ation Example DLP ger Factorization 0(2") O(k2) \mathcal{N} gettp. .000 ,000 4 +000° Sactors logg X ,0032 5 73 .1024 10 104,8576 20 1,1 K1015 1,2 6×627 50 .25 (& space) complexity in terms of the bits of 2100 100 Mora Polynomial = Sast or easy e size of inpet vs N~2.220 Exponential = S/ow or hard. An schexpontial ΓS is for all it runts 670 twice as big in $O(e^{\epsilon k})$ $\sim 2^{k} \in j \neq = \log_{2} N$ a(su) ~ "bit completity" Example ZKE pSZK+1 gK=4 Gi= Fot O(F(N)) ~ "Absolute complexity + => Problem takes g,h, P = 2 K+1 pose 3 A>0 5.t. takes < 3 0 212+1 k bits $\mathcal{G}(k)$ = 302.2K O(k^A) steps. $=6 \cdot 2^{k} = O(2^{k}) \text{ absolute}$ omial five solution or O(k) bits. Liber Tine Solve it Guess & Quadratik Time. takes check 2P steps = Q(P) absolutely z > 0 s.t.-0(2K) bits bits O(k)OK Ponentical O(eck) steps Each mult of 2 k bit #5 Notre. ponential Time. takes k^2 steps Solution $O(k^2 \cdot 2^k) = O(3^k)$

exponetion