
PROJECTIVE GEOMETRY FOR PERFECTOID SPACES
GABRIEL DORFSMAN-HOPKINS

UNIVERSITY OF WASHINGTON MATHEMATICS

SUMMARY
To understand the structure of an algebraic variety we often embed it in various projective spaces. This
develops the notion of projective geometry which has been an invaluable tool. Motivated by [1], we begin
to develop a perfectoid analog of projective geometry, and explore how equipping a perfectoid space
with a map to a certain analog of projective space can be a powerful tool to understand its geometric
and arithmetic structure. Along the way we do the following.

1. Give a complete classification of vector bundles on the perfectoid closed unit disk.
2. Compute the Picard group of the perfectoid analog of projective space (projectivoid space).
3. Compute the cohomology of all line bundles on projectivoid space.
4. Compute the functor of points of projectivoid space.
5. Use projectivoid geometry to compare the Picard groups of perfectoid spaces and their tilts.

LINE BUNDLES ON PROJECTIVOID SPACE

Since the building blocks for projectivoid space
are closed perfectoid disks, we begin by establish-
ing a perfectoid analog of the Quillen-Suslin The-
orem.

Theorem A. Finite vector bundles on Dn,perf are all
trivial.

With this in hand we can compute the Picard
group of projectivoid space.

Theorem B.

PicPn,perf ∼= Z[1/p].

In particular, for each d ∈ Z[1/p], there is a
twisting sheaf O(d), which corresponds to ho-
mogeneous convergent power series of degree d
in K

〈
T

1/p∞

0 , · · · , T 1/p∞

n

〉
and its various localiza-

tions. As in the classical case, this can be exhib-
ited explicitly through their cohomology, which
we compute below.

Theorem C. Let X = Pn,perf and d ∈ Z[1/p] so that
OX(d) ∈ PicX an arbitrary line bundle. Then:
If d ≥ 0,

H0 (X,OX(d)) = K
〈
T

1/p∞

0 , · · · , T 1/p∞

n

〉
d
.

If d < 0,

Hn (X,OX(d)) = K
〈
T
−1/p∞

0 , · · · , T−1/p∞

n

〉
d
.

In all other cases,

Hr (X,OX(d)) = 0.
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MAPS TO PROJECTIVOID SPACE

Like in classical geometry, maps to projectivoid
space can be expressed in terms of globally gen-
erated line bundles.

Theorem D. A map X → Pn,perf corresponds to tu-
ples

(
Li, s

(i)
j , ϕi

)
, where Li is a line bundle on X ,

the s(i)
j are n + 1 generating global sections of Li,

and ϕi : L ⊗pi+1
∼−→ Li are isomorphisms under which(

s
(i+1)
j

)⊗p
7→ s

(i)
j .

If K has characteristic p, X is perfect, so the pth
power map on PicX is an isomorphism. There-
fore we can refine the theorem.

Corollary E. Let X be a perfectoid space over K of
positive characteristic. Fix a line bundle L on X to-
gether with global sections s0, · · · , sn, which generate
L . Then there is a unique morphism φ : X → Pn,perf

such that φ∗(O(1)) ∼= L and φ∗(Ti) = si.

The tilting equivalence simplifies matters. Since
Hom(X,Pn,perf

K ) = Hom(X[,Pn,perf
K[ ), we have:

Corollary F. Let X be a perfectoid space over K of
any characteristic, a map to Pn,perf

K is equivalent to a
single line bundle L on X[ together with n+ 1 global
sections generating L .

APPLICATIONS: UNTILTING LINE BUNDLES

Projectivoid geometry gives us a hands on way to
compare line bundles on X and X[. Using the
fact that X and X[ have the same maps to pro-
jectivoid space (over their respective base fields),
and chaining this with Corollary F, we get a ho-
momorphism

PicX[ −→ lim
←−

PicX.

With a geometric argument we conclude:

Theorem G. Suppose X is a perfectoid space over
K. Suppose that X has an ample line bundle and that
H0(X,OX) = K. Then

PicX[ ↪→ lim
←−

PicX.

In particular, if PicX has no p torsion:

PicX[ ↪→ PicX.

PRELIMINARIES
An initial motivation for perfectoid spaces is the
following isomorphism of Fontaine and Winten-
berger connecting Galois theory in positive and
mixed characteristics.

Theorem 1 (Fontaine-Wintenberger). There is a
canonical isomorphism of absolute Galois groups

Gal
(
Qp

(
p1/p∞

))
∼= Gal

(
Fp

((
t1/p

∞
)))

.

In [2], Scholze introduced a class of algebro-
geometric objects called perfectoid spaces, which
exhibit this very correspondence. To any perfec-
toid space S one can functorially construct its tilt:
a homeomorphic perfectoid space S[ in character-
istic p.

Theorem 2 (Scholze). The functor X 7→ X[ is an
equivalence of categories of perfectoid spaces over S
and S[, inducing an equivalence of étale sites:

Sét
∼−→ S[

ét.

Letting S be the perfectoid space associated to
Qp

(
p1/p∞)

we recover Theorem 1.

EXAMPLES
Much like varieties, schemes, and rigid analytic
spaces, perfectoid spaces are locally spectra of
perfectoid algebras. (We use adic spectra, see [3].)

Example 1 (Closed unit disk). Dn,perf
K is the space

associated to the perfectoid Tate algebra:

K
〈
T

1/p∞

1 , · · · , T 1/p∞

n

〉
=

̂⋃
i

K
〈
T

1/pi

1 , · · · , T 1/pi

n

〉
Example 2 (Projectivoid Space). The perfectoid
analog of projective space, Pn,perf

K can be constructed
by glueing together closed perfectoid disks along their
boundaries in the usual way. It also arises as an in-
verse limit along [T0 : · · · : Tn] 7→ [T p

0 : · · · : T p
n ],

Pn,perf
K ∼ lim

←−
(· · · −→ Pn

K −→ Pn
K .)

Lemma 1. Let K be a perfectoid field with tilt K[.(
Dn,perf

K

)[ ∼= Dn,perf
K[(

Pn,perf
K

)[ ∼= Pn,perf
K[ .


