PROJECTIVE GEOMETRY FOR PERFECTOID SPACES

SUMMARY

To understand the structure of an algebraic variety we often embed it in various projective spaces. This develops the notion of *projective geometry* which has been an invaluable tool. Motivated by [1], we begin to develop a perfectoid analog of projective geometry, and explore how equipping a perfectoid space with a map to a certain analog of projective space can be a powerful tool to understand its geometric and arithmetic structure. Along the way we do the following.

- 1. Give a complete classification of vector bundles on the perfectoid closed unit disk.
- 2. Compute the Picard group of the perfectoid analog of projective space (*projectivoid space*).
- 3. Compute the cohomology of all line bundles on projectivoid space.
- 4. Compute the functor of points of projectivoid space.
- 5. Use *projectivoid geometry* to compare the Picard groups of perfectoid spaces and their tilts.

PRELIMINARIES

An initial motivation for perfectoid spaces is the following isomorphism of Fontaine and Wintenberger connecting Galois theory in positive and mixed characteristics.

Theorem 1 (Fontaine-Wintenberger). There is a canonical isomorphism of absolute Galois groups

$$\operatorname{Gal}\left(\mathbb{Q}_p\left(p^{1/p^{\infty}}\right)\right) \cong \operatorname{Gal}\left(\mathbb{F}_p\left(\left(t^{1/p^{\infty}}\right)\right)\right).$$

In [2], Scholze introduced a class of algebrogeometric objects called *perfectoid spaces*, which exhibit this very correspondence. To any perfectoid space *S* one can functorially construct its *tilt*: a homeomorphic perfectoid space S^{\flat} in characteristic p.

Theorem 2 (Scholze). The functor $X \mapsto X^{\flat}$ is an equivalence of categories of perfectoid spaces over Sand S^{\flat} , inducing an equivalence of étale sites:

$$S_{\acute{e}t} \xrightarrow{\sim} S_{\acute{e}t}^{\flat}.$$

Letting *S* be the perfectoid space associated to $\mathbb{Q}_p(p^{1/p^{\infty}})$ we recover Theorem 1.

REFERENCES

- [1] S. Das. Vector Bundles on Perfectoid Spaces. PhD thesis, University of California, San Diego, 2016.
- [2] P. Scholze. Perfectoid spaces. 116(1):245–313, 2012.
- [3] R. Huber. A generalization of formal schemes and rigid analytic varieties. 217(4):513–551.

GABRIEL DORFSMAN-HOPKINS UNIVERSITY OF WASHINGTON MATHEMATICS

EXAMPLES

Much like varieties, schemes, and rigid analytic spaces, perfectoid spaces are locally spectra of perfectoid algebras. (We use adic spectra, see [3].)

Example 1 (Closed unit disk). $\mathbb{D}_{K}^{n,perf}$ is the space associated to the perfectoid Tate algebra:

$$K\left\langle T_1^{1/p^{\infty}}, \cdots, T_n^{1/p^{\infty}} \right\rangle = \bigcup_i K\left\langle T_1^{1/p^i}, \cdots, T_n^{1/p^i} \right\rangle$$

Example 2 (Projectivoid Space). The perfectoid analog of projective space, $\mathbb{P}^{n,perf}_{K}$ can be constructed by glueing together closed perfectoid disks along their boundaries in the usual way. It also arises as an in*verse limit along* $[T_0 : \cdots : T_n] \mapsto [T_0^p : \cdots : T_n^p]$,

 $\mathbb{P}_{K}^{n,perf} \sim \lim_{K} (\cdots \longrightarrow \mathbb{P}_{K}^{n} \longrightarrow \mathbb{P}_{K}^{n}.)$

Lemma 1. Let K be a perfectoid field with tilt K^{\flat} .

 $\mathbb{D}^{n,perf}_{r}$ $\left(\mathbb{D}_{K}^{n,perf}
ight)$ \simeq $\left(\mathbb{P}^{n,perf}_{K}
ight)^{\sharp}$ $\cong \mathbb{P}^{n, perf}_{K^{\flat}}.$

CONTACT INFORMATION

Web www.math.washington.edu/~gdh2

Email gdh2@uw.edu

Find the paper here www.math.washington.edu/~ gdh2/projectivoidgeometry.pdf

Since the building blocks for projectivoid space are closed perfectoid disks, we begin by establishing a perfectoid analog of the Quillen-Suslin Theorem.

Theorem A. Finite vector bundles on $\mathbb{D}^{n,perf}$ are all trivial.

With this in hand we can compute the Picard group of projectivoid space.

Theorem B.

In particular, for each $d \in \mathbb{Z}[1/p]$, there is a twisting sheaf $\mathcal{O}(d)$, which corresponds to homogeneous convergent power series of degree d in $K\left\langle T_0^{1/p^{\infty}}, \cdots, T_n^{1/p^{\infty}} \right\rangle$ and its various localiza-

Like in classical geometry, maps to projectivoid space can be expressed in terms of globally generated line bundles.

Theorem D. A map $X \to \mathbb{P}^{n, perf}$ corresponds to tuples $(\mathscr{L}_i, s_j^{(i)}, \varphi_i)$, where \mathscr{L}_i is a line bundle on X, the $s_i^{(i)}$ are n+1 generating global sections of \mathscr{L}_i , and $\varphi_i : \mathscr{L}_{i+1}^{\otimes p} \xrightarrow{\sim} \mathscr{L}_i$ are isomorphisms under which $\left(s_{j}^{(i+1)}\right)^{\otimes p} \mapsto s_{j}^{(i)}.$

If *K* has characteristic *p*, *X* is perfect, so the *p*th power map on $\operatorname{Pic} X$ is an isomorphism. Therefore we can refine the theorem.

APPLICATIONS: UNTILTING LINE BUNDLES

Projectivoid geometry gives us a hands on way to compare line bundles on X and X^{\flat} . Using the fact that X and X^{\flat} have the same maps to projectivoid space (over their respective base fields), and chaining this with Corollary F, we get a homomorphism

LINE BUNDLES ON PROJECTIVOID SPACE

 $\operatorname{Pic} \mathbb{P}^{n, perf} \cong \mathbb{Z}[1/p].$

MAPS TO PROJECTIVOID SPACE

$$\operatorname{Pic} X^{\flat} \longrightarrow \lim_{\leftarrow} \operatorname{Pic} X.$$

With a geometric argument we conclude:

tions. As in the classical case, this can be exhibited explicitly through their cohomology, which we compute below.

Theorem C. Let $X = \mathbb{P}^{n, perf}$ and $d \in \mathbb{Z}[1/p]$ so that $\mathscr{O}_X(d) \in \operatorname{Pic} X$ an arbitrary line bundle. Then: If $d \geq 0$,

If d < 0,

 $\mathrm{H}^{n}\left(X,\mathscr{O}_{X}(d)\right)=K\left\langle T_{0}^{-1/p^{\infty}},\cdots,T_{n}^{-1/p^{\infty}}\right\rangle_{\mathcal{A}}.$

In all other cases,

Corollary E. Let X be a perfectoid space over K of positive characteristic. Fix a line bundle \mathscr{L} on X together with global sections s_0, \cdots, s_n , which generate \mathscr{L} . Then there is a unique morphism $\phi: X \to \mathbb{P}^{n, perf}$ such that $\phi^*(\mathscr{O}(1)) \cong \mathscr{L}$ and $\phi^*(T_i) = s_i$.

The tilting equivalence simplifies matters. Since Hom $(X, \mathbb{P}^{n, perf}_{K})$ = Hom $(X^{\flat}, \mathbb{P}^{n, perf}_{K^{\flat}})$, we have:

Corollary F. Let X be a perfectoid space over K of any characteristic, a map to $\mathbb{P}^{n,perf}_{K}$ is equivalent to a single line bundle \mathscr{L} on X^{\flat} together with n+1 global sections generating \mathscr{L} .

Theorem G. Suppose X is a perfectoid space over K. Suppose that X has an ample line bundle and that $H^0(\overline{X}, \mathscr{O}_{\overline{X}}) = \overline{K}$. Then

In particular, if Pic *X has no p torsion:*

 $\mathrm{H}^{0}(X,\mathscr{O}_{X}(d)) = K\left\langle T_{0}^{1/p^{\infty}}, \cdots, T_{n}^{1/p^{\infty}} \right\rangle_{\mathcal{J}}.$

$$\operatorname{H}^{r}(X, \mathscr{O}_{X}(d)) = 0.$$

 $\operatorname{Pic} X^{\flat} \hookrightarrow \operatorname{lim} \operatorname{Pic} X.$

 $\operatorname{Pic} X^{\flat} \hookrightarrow \operatorname{Pic} X.$